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Main Objective 

• The main objective of this paper is to develop a calibration 
procedure  and then validate a casting simulation software 
(NocaFlow&Solid) for quantitative prediction of  
macroshrinkage and shrinkage porosities in A356 sand mold 
castings  (Obiectivul principal -  dezvoltarea  unei  proceduri 
de calibrare si validare a Soft-ului “Novacast” pentru 
prezicerea cantitativa a macroretasurilor si microretasurilor in 
aliajul A356 turnat in forme de nisip folosind tehnologia de 
printare RCT)  
– A356 plates cast in furan-silica sand molds using the Prometal Rapid 

Casting Technology (RCT) mold printing technology.  



Introduction 
Competitive growth of eutectics and dendrites  

 

      

L       

a    dendrites    

+eutectic       

T
e
m

p
e
ra

tu
re

 
  

Composition   Growth velocity,  V =  m 
V 

 D T 
2 
  

Highest growth    

velocity for the  

undercooling range 

V   a       

coupled zone 

L +    a       

L +    b       

b   
    dendrites    
+ eutectic       

a       
b 

    

V   b   

V   eut       

V   eut       V   b     V   eut       V   a     

asymmetric coupled zone 

(irregular eutectic) 

D. M. Stefanescu, Science and Engineering of Casting Solidification, Springer 2009 



Details of the ProMetal RCT Process 

S15 Process Station Printhead 

Macro-shrinkage and  
Shrinkage Porosity  

 (A356) 



Geometries of the A356 plates with 
the rigging system 

Rigging system type A Rigging system type B 

Rigging system type C 

chill 

Plate thicknesses:  25 mm and 12.5 mm  



Simulation Parameters 

Simulation parameters Material type /Value 

Mold Silica Sand/Furan binder 

Mold thickness Minimum 50 mm 

Initial Mold and Ambient Temperature 20 C 

Pouring time (ladle pouring-over lip) ~ 3 s 

Pouring Temperature 740 C 

A356 (7.0 wt. % Si and 0.35% Mg) TL = 622 C, TS = 571 C 



Calibration Procedure (A356)  

Niyama threshold is the volume of liquid fraction where the temperature gradient 

(G) and cooling rate (CR) are computed – Niyama = G x CR-0.5 

 

Niyama values vs. porosity severity level :  <0.1 severe; 0.1-0.3 moderate; 0.3-0.5 

less severe; 0-1.5 least severe 

    

Niyama scale: 1.0-1.5  pores <10 microns (not visible at X-ray) 
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Threshold regions for shrinkage prediction 

• Three regions/parameters are defined: 
–  Mass feeding threshold – based on dendrite coherency solid fraction:   

• Value of solid phase fraction below which the Navier Stokes equations are applicable.  

• Equiaxed crystals can nucleate in the melt and then grow and flow freely in the melt.   

• Fluid flow is by mass feeding.  

–  Interdendritic feeding threshold:  

• Value of solid phase above which melt flow is insignificant without plastic deformation.  

• Fluid flow is by interdendritic feeding.  

• Burst and solid feeding may also occur.  

–  Mass feeding threshold – Interdendritic feeding threshold region:   

• Darcy’s law applies in this zone.   

• A fraction of solid phase network becomes rigid and opposes resistance to melt flow.  
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Calibration Results for A356 alloy 

Parameter changed in 

NovaCast 

Studied values 

(Solid fraction, %) 

Calibration values 

(Solid fraction, %) 
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Density curve 

Niyama scale 

90-97% 

20-50% 

50%-80% 

 

Ref. [1, 2] 
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Ref. [2] 

0-0.3 

[1] Novaflow&SolidTM  (Novacast AB, Sweden, www.novacast.se)   

[2] A. Sabau, Met Tran B, Vol. 37 B, 2006, pp. 131-139 

http://www.novacast.se/


Risers A 

A356 (gravity pouring) 

Macro-Shrinkage Validation: A356 plate A 
 



Riser B 

A356 (gravity pouring) 

Macro-Shrinkage Validation:  A356 plate B 
 



Riser C  

A356 (gravity pouring) 

Macro-Shrinkage Validation: A356 plate C 
 



Shrinkage Porosity Validation: A356 -
25 mm Thick Plate A 

Computer tomography (CT) 
scan showing volume of 
defects per mm3 



Shrinkage Porosity Validation: A356 -
25 mm Thick Plate B 

Computer tomography (CT) 
scan showing volume of 
defects per mm3 



Shrinkage Porosity Validation: A356 - 
12.5 mm Thick Plate C 

Computer tomography (CT) scan showing 
volume of defects per mm3 



Shrinkage Porosity Calibration: A356 
plate A (25 mm) 

Solidification time  

Sample   Pore% Niyama ts (s) CR (K/s)

#1 0.875 0.229 801    0.217

#2 1.614 0.050 796    0.219

#3 1.862 0.133 813    0.214

#4 1.314 0.119 839    0.207

#5 1.554 0.114 854    0.204

#6 2.221 0.058 870    0.200

#7 1.754 0.321 823    0.211

#8 0.487 1.278 715    0.243

#9 1.009 0.516 776    0.224

#10 0.455 1.553 475    0.366



Shrinkage Porosity Calibration: A356 
plate B (25 mm) 

Solidification time  

Sample    Pore% Niyama ts (s) CR (K/s)

#1 0.845 0.277 793     0.219

#2 1.678 0.041 791     0.222

#3 1.220 0.137 822     0.212

#4 2.370 0.039 815     0.213

#5 2.042 0.144 790     0.221

#6 1.459 2.515 783     0.222

#7 0.754 7.995 530     0.328

#8 0.632 5.469 675     0.258

#9 0.664 7.814 517 0.337

#10 0.552 8.028 471     0.369



Shrinkage Porosity Calibration: A356 
plate C (12.5 mm) 

Sample ts (s)   CR(K/s) Pore% Niyama

#1 192 0.703 0.712 0.291

#2 184     0.784 0.747 0.208

#3 191     0.763 0.665 0.224

#4 193     0.755 1.496 0.199

#5 187     0.722 0.913 0.275

#6 196     0.732 1.738 0.132

#7 198     0.654 0.558 0.263

#8 187     0.832 0.827 0.234

Solidification time  



Niyama vs. Pore% (A356)  
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Concluding Remarks and Future Work 

• Conclusions: 

– A comprehensive validation/calibration for predictions of macro-shrinkage and shrinkage 

porosities was performed  

– Experimental measurements for A356 plate sand mold castings at ExOne/Prometal RCT.  

– Predictions are compared reasonably with macro-shrinkage and shrinkage porosity 

measurements.  

– For A356 and the foundry practice in in the current work, the critical Niyama number is 

0.5. 

– It was also demonstrated that Niyama criterion correlates reasonable well with pore 

percent in A356 plate castings.   

• Future work: 

– Developing an improved criterion to account for the nucleation and growth of 

shrinkage porosities  
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A356 (Low Pressure) 

Macro-Shrinkage Validation 

Steel (Gravity Pouring) 



 

Cast iron mold  

Cast iron mold with 12 mm insulation 

  

  

Prediction of Shrinkage and Porosities 
in a 6-in Diameter Ingot (IN718)  



Parametric Study: Macro-Shrinkage and 
Shrinkage Porosities (IN718) 

• Studied variables were: 
– Ingot diameter and taper 

– Sleeve length 

– Hot top vs. radiation 

– Alloy type 

• Main findings: 
– For sleeve and cast iron cases, shrinkage length increase and porosity 

length decreases with ingot diameter 

– For full insulation case, porosity length increase and shrinkage length 
decreases with ingot diameter   

– Sleeve length and use of hot top vs. radiation are important factors. 

– Ingot D=12-in case study:  
• A small-size insulation sleeve with hot top material show lowest predicted levels of 

shrinkage 

• Without hot top (e.g., radiation), a larger insulation sleeve is required 



What’s next? Solver Length Scales for Multi-Scale Modeling* 
 

0.1 mm

Macro (1 mm–1 m) Micro (10–1000 mm) 

Meso (0.1–10 mm) 

Nano (1–100 nm) 

Ultrasonic Technology, MHD processing: controlled solidification, minimize macro-segregation 
New high temperature alloys: Nucleation and growth kinetics of in-situ nano-phases 

*Laurentiu Nastac, “Modeling and Simulation of Microstructure Evolution in    
 Solidifying Alloys,” Springer Verlag, 2004, 305 pages.  


